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We derive the generalized Fokker-Planck equation associated with a Langevin equation driven by arbitrary
additive white noise. We apply our result to study the distribution of symmetric and asymmetric Lévy flights
in an infinitely deep potential well. The fractional Fokker-Planck equation for Lévy flights is derived and
solved analytically in the steady state. It is shown that Lévy flights are distributed according to the beta
distribution, whose probability density becomes singular at the boundaries of the well. The origin of the
preferred concentration of flying objects near the boundaries in nonequilibrium systems is clarified.
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I. INTRODUCTION

It is remarkable, and at first sight surprising, that a large
variety of physical, biological, financial, and other processes
can be described by stable Lévy processes with infinite vari-
ance �1–3�. The latter are defined as continuous-time random
processes whose independent and stationary increments are
distributed according to heavy-tailed stable distributions. The
main feature of these distributions is that the tails cannot be
cut off, or in other words, rare but large events cannot be
neglected. As a consequence, the classical stochastic theory,
which is based on the ordinary central limit theorem, is no
longer valid.

Due to the heavy-tailed distributions of the increments,
stable Lévy processes exhibit large jumps, and for this reason
these processes are often called Lévy flights. Lévy flights are
actually observed in various real systems. Representative ex-
amples include, for instance, fluorescent probes in living
polymers �4�, tracer particles in rotating flows �5�, ions in
optical lattices �6�, cooled atoms in laser fields �7�, subsur-
face hydrology �8,9�, and ecology �10–12�, though a recent
work questions the empirical evidence for Lévy flights in
animal search patterns �13�. Lévy flights have also been pre-
dicted for a large number of model systems �1–3�. The ubiq-
uity of these processes is supported by the generalized
central-limit theorem �14�, which states that all limiting dis-
tributions of properly normalized and centered sums of inde-
pendent, identically distributed random variables are stable.

The Langevin equation is one of the most important tools
for studying noise phenomena in systems coupled to a fluc-
tuating environment. Introduced by Langevin just 100 years
ago �15� to describe the dynamics of a Brownian particle,
this equation and its various modifications are widely used in
many areas of science �16�. The Langevin equation driven by
Lévy white noise—i.e., noise defined as a time derivative, in
the sense of generalized functions, of a stable Lévy
process—provides a basis for the study of Lévy flights in
external potentials. It has been shown that the probability
density of Lévy flights satisfies the fractional Fokker-Planck
�FP� equation �17–21�. The steady-state solutions of this
equation describing confined Lévy flights—i.e., flights with

finite variance—are of particular interest. One reason is that
these solutions will clarify the distribution of flying objects
in confined domains. This is an important issue, especially
near impermeable boundaries, in such complex systems as
confined plasmas and turbulent flows. Another reason is that
exact general solutions of a simple form, which are valid for
any Lévy white noise, will be very useful for testing a vari-
ety of numerical methods in this area �22–24�. However,
known solutions are related to power potentials and to a very
special case of Lévy white noise with unit index of stability
and zero skewness parameter �25,26�, and thus they are not
suitable for those purposes.

It should be noted that Lévy white noises do not exhaust
all possible white noises. As a consequence, the fractional FP
equation is a particular case of the generalized FP equation,
which corresponds to the Langevin equation driven by an
arbitrary white noise. Since any white noise is defined as a
time derivative, in the sense of generalized functions, of a
stationary process with independent increments, it can be
characterized by the transition probability density or, alterna-
tively, by the characteristic function of this white noise gen-
erating process. One expects therefore that the term in the
generalized FP equation that describes the effect of the noise
on the dynamics of the system can also be expressed via the
characteristic function. The derivation of the generalized FP
equation is of great importance because it accounts for all
possible white-noise effects in a unified way and will be very
useful for applications.

In this paper, we put forward the generalized FP equation
and find the analytical solution of this equation for steady-
state Lévy flights in a confined geometry.

II. GENERALIZED FOKKER-PLANCK EQUATION

In many applications, ranging from physical and chemical
to biological and social systems, the relevant degrees of free-
dom of these systems obey a �dimensionless� Langevin equa-
tion that is equivalent to the equation of motion for an over-
damped particle:

ẋ�t� = f„x�t�,t… + ��t� . �1�

Here, x�t� is a particle coordinate, x�0�=0, f�x , t�
=−�U�x , t� /�x is a force field, U�x , t� is an external deter-
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ministic potential, and ��t� is a random force �noise� result-
ing from a fluctuating environment. Though the quantities in
Eq. �1� have different meanings for different systems, we
will use the above terminology to be concrete.

Under certain conditions �see, e.g., Refs. �27,28��, the
noise ��t� can be chosen to be white. In this case, the incre-
ment �x�t�=x�t+��−x�t� of the particle coordinate during a
time interval � ��→0� is written as

�x�t� = f„x�t�,t…� + ���t� , �2�

which defines the meaning of Eq. �1� in the white-noise ap-
proximation. Here ���t�=��t+��−��t�=�t

t+�dt���t��, and we
assume that the integral exists in the mean-square sense. A
white-noise-generating process—i.e., a stationary random
process ��t�=lim�→0� j=0

�t/��−1���j��, with ��0�=0 and where
�t /�� denotes the integer part of t /�—is completely defined
by the transition probability density p��� j+1 ,��� j� of a
discrete-time process ��n��=� j=0

n−1���j�� �n�1� as �→0.
Here � j+1 and � j denote the possible values of ��j�+��
and ��j��, respectively. Note that all transition probability
densities of the form p�� j+k ,k� �� j� can be expressed
through p�� j+1 ,� �� j� by using the Chapman-Kolmogorov
equation �27,30,31�. In particular, p�� j+2 ,2� �� j�
=�d� j+1p�� j+2 ,� �� j+1�p�� j+1 ,� �� j�. This implies that the in-
fluence of any white noise on the system can also be fully
characterized by the function p�� j+1 ,� �� j�. We assume that
the transition probability density p�� j+1 ,� �� j� is properly
normalized, �−�

� d� j+1p�� j+1 ,� �� j�=1, and that it satisfies the
condition lim�→0 p�� j+1 ,� �� j�=��� j+1−� j�, where ��·�
stands for the Dirac � function. For simplicity, we also as-
sume that p�� j+1 ,� �� j�= p��� ,�� with ��=� j+1−� j.

We define the probability density of the particle coordi-
nate x�t� in the usual way: namely P�x , t�= ��(x−x�t�)	,
where the angular brackets denote averaging over the noise.
Taking the Fourier transform of P�x , t� according to the defi-
nition F
g�x���gk=�−�

� dx e−ikxg�x�, we obtain Pk�t�
= �e−ikx�t�	—i.e., the characteristic function of x�t�. Equation
�2� implies that the increment of this quantity, �Pk
= Pk�t+��− Pk�t�, can be written in the form �Pk
=−ik��e−ikx�t�f(x�t� , t)	+ �e−ikx�t��e−ik���t�−1�	 as �→0. The
use of the well-known properties of the Fourier transform
yields ik�e−ikx�t�f(x�t� , t)	=F
�f�x , t�P�x , t� /�x�, and the sta-
tistical independence of x�t� and ���t� implies �29�
�e−ikx�t��e−ik���t�−1�	= Pk�t��pk���−1�, where pk���
=F
p��� ,���= �e−ik���t�	 is the characteristic function of
���t�. Dividing �Pk by � and taking the limit �→0, we ob-
tain the generalized FP equation in Fourier space,

�

�t
Pk�t� = − F
 �

�x
f�x,t�P�x,t�� + Pk�t�	k, �3�

where 	k=lim�→0�pk���−1� /�.
It is advantageous to introduce the characteristic function

Sk= �e−ik��1�	 of ��1�. We rewrite it as Sk=lim�→0�pk�����1/��

using the formula ��1�=lim�→0� j=0
�1/��−1���j��. Replacing

pk��� by 1+�	k and taking into account that lim
→0�1
+
�1/
=e, we readily find that Sk=e	k. Finally, applying the
inverse Fourier transform F−1
gk��g�x�

= �1 /2���−�
� dk eikxgk to Eq. �3� and using 	k=ln Sk, we ob-

tain the generalized FP equation in real space,

�

�t
P�x,t� = −

�

�x
f�x,t�P�x,t� + F−1
Pk�t�ln Sk� , �4�

with P�x ,0�=��x�, which corresponds to the Langevin equa-
tion �1� driven by an arbitrary white noise.

Equation �4� represents our first main result. It constitutes
a closed, concise representation of the combination of the
Fokker-Planck and Kolmogorov-Feller equations, which are
the basic equations governing continuous and discontinuous
Markov processes, respectively �27,30,31�. A remarkable
feature of this equation is that it accounts for the noise influ-
ence in a unified way: namely by means of the characteristic
function Sk of the white-noise-generating process ��t� at t
=1. All presently known FP equations associated with Eq.
�1� can be obtained directly from Eq. �4�. In particular, if ��t�
is Poisson white noise characterized by the transition prob-
ability density p��� ,��= �1−��������+��q����, where �
is the average number of jumps of ��t� per unit time and
q���� is the probability density of jump sizes, then Sk
=e−��1−qk� and Eq. �4� yields �32–34�

�

�t
P�x,t� = −

�

�x
f�x,t�P�x,t� − �P�x,t�

+ ��
−�

�

dy P�y,t�q�x − y� . �5�

If ��t� is Lévy white noise, then the generalized central-limit
theorem �14� implies that Sk is the characteristic function of
Lévy-stable distributions. As is well known �see, e.g., Ref.
�35��, the characteristic function Sk�
 ,� ,� ,�� of nondegen-
erate stable distributions depends on four parameters: an in-
dex of stability 
� �0,2�, a skewness parameter �� �−1,1�,
a scale parameter �� �0,��, and a location parameter �� �
−� ,��. Assuming in accordance with the initial condition
P�x ,0�=��x� that �=0 and excluding from consideration the
singular case where 
=1 and ��0 simultaneously �in this
case �	k�=�, and the system reaches the final state immedi-
ately�, we obtain Sk=Sk�
 ,� ,��, where �35�

Sk�
,�,�� = exp�− ��k�
�1 + i� sgn�k�tan
�


2
�� . �6�

Equation �4� with Sk=Sk�
 ,� ,�� can be easily rewritten as a
fractional differential equation. The Riemann-Liouville de-
rivatives of a function g�x� on the interval �−s ,s� are defined
as �36�

sD�
� g�x� =

��1�n

��n − ��
dn

dxn�
0

s�x

dy g�x � y�yn−�−1. �7�

Here, sD+

 and sD−


 denote the operators of the left- and right-
hand-side derivatives of order � �0�����, respectively,
with n=1+ ���, and ��z� is the gamma function. Since
F
�D�


 P�x , t��= ��ik�
Pk�t�, which follows from the defini-
tion �7�, Eq. �4� reduces to the desired fractional FP equation

DENISOV, HORSTHEMKE, AND HÄNGGI PHYSICAL REVIEW E 77, 061112 �2008�

061112-2



�

�t
P�x,t� = −

�

�x
f�x,t�P�x,t� −

�

2 cos��
/2�

���1 + ���D+

 + �1 − ���D−


�P�x,t� . �8�

All previously known forms of the fractional FP equation,
which correspond to the Langevin equation �1� driven by
Lévy white noise, can be derived from Eq. �8�. In particular,
taking into account the relation ��D+


+ �D−

�P�x , t�

=2 cos��
 /2�F−1
�k�
Pk�t�� and the definition of the frac-
tional Riesz derivative �36�, �
P�x , t� /��x�
=−F−1
�k�
Pk�t��,
Eq. �8� in the case of symmetric Lévy white noise ��=0�
yields �17–21�

�

�t
P�x,t� = −

�

�x
f�x,t�P�x,t� + �

�


� �x�

P�x,t� . �9�

Specifically, if ��t� represents Gaussian white noise of inten-
sity D—i.e., 
=2 and �=D—then Eq. �9� becomes the or-
dinary FP equation �37�.

We note that Eq. �4� also applies to the case of compound
white noises. For example, if ��t� is the sum of independent
Lévy and Poisson white noises, then Sk=Sk�
 ,� ,��e−��1−qk�

and Eq. �4� can be written as

�

�t
P�x,t� = −

�

�x
f�x,t�P�x,t� −

�

2 cos��
/2�

���1 + ���D+

 + �1 − ���D−


�P�x,t� − �P�x,t�

+ ��
−�

�

dy P�y,t�q�x − y� . �10�

III. STEADY-STATE LÉVY FLIGHTS
IN A CONFINED GEOMETRY

We apply Eq. �8� to the case of stationary Lévy flights in
an infinitely deep potential well. We assume that f�x , t�=0
within the well—i.e., for x� �−l , l�—and that the boundaries
at x= � l are impermeable for particles—i.e., P�x , t�=0 at
�x�� l. With these conditions, Eq. �8� for the stationary prob-
ability density Pst�x� reduces to �1+��lD+


Pst�x�+ �1
−��lD−


Pst�x�=0. Rewriting this equation as dJ�x� /dx=0,
where J�x� is the probability current, and using the boundary
condition J��l�=0 �37�, we obtain the equation J�x�=0,
which for 0�
�1 reads

�1 + ���
−l

x

dy
Pst�y�

�x − y�
 − �1 − ���
x

l

dy
Pst�y�

�y − x�
 = 0. �11�

The fact that lD�

 �l�x�
−1�0 �36� suggests seeking a solu-

tion of Eq. �11� in the form Pst�x�=C�l+x�−��l−x�−�, where
C is a normalization factor. The parameters � and � are
determined by the equation

�1 + ��B�1 − 
,1 − ��z1−
F�1 − 
,�;2 − 
 − �;− z�

= �1 − ��B�1 − 
,1 − ��F�1 − 
,�;2 − 
 − �;− z−1� .

�12�

Here, z= �l+x� / �l−x�, B�a ,b�=��a���b� /��a+b� is the beta
function, and F�a ,b ;c ;y� is the Gauss hypergeometric func-

tion. Equation �12� must be independent of x, since � and �
do not depend on x. This requirement leads to the condition

+�+�=2. Using the relation F�a ,b ;b ;−y�= �1+y�−a �38�,
we find that in this case Eq. �12� becomes

�1 + ��B�1 − 
,1 − �� − �1 − ��B�1 − 
,1 − �� = 0.

�13�

Solving the equations 
+�+�=2 and �13� with respect to �
and �, we find


�

�
� = 1 −




2
�

1

�
+ arctan�� tan

�


2
� , �14�

where arctan x denotes the principal value of the inverse tan-
gent function. Similar calculations for 1�
�2 lead to the
same result, and formula �14� is valid for all 
� �0,2� �ex-
cluding the case 
=1, ��0�. Finally, calculating the nor-
malization factor C, we obtain

Pst�x� = �2l�1−
 �l + x�−��l − x�−�

B�1 − �,1 − ��
. �15�

Equations �14� and �15� represent our second main result.
Particles that perform Lévy flights are distributed in an infi-
nitely deep well according to the beta distribution �see Fig.
1�. The main feature of this distribution is the singular be-
havior of Pst�x� as �x�→ l if 
�2 and �� �1. The reason is
that for 
�2 the particles can perform random jumps in
both directions. However, the boundaries are impermeable,
and consequently the particles are concentrated preferably
near these two boundaries. In particular, for �=0, Eqs. �14�
and �15� yield Pst�x�= �2l�1−
��
��l2−x2�
/2−1 /�2�
 /2�. In
contrast, for �= �1, one-sided jumps dominate and the par-
ticles are concentrated near one of the boundaries. Specifi-
cally, Pst�x�=�(l−sgn���x), if 0�
�1, and Pst�x�
= �2l�1−
�
−1��l+sgn���x�
−2, if 1�
�2. Finally, for

K 0 . 5 0 . 0 0 . 5 1 . 0

P
st
(x
)

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

a = 0 . 5 ,

a = 0 . 5 ,

a = 1 . 5 ,

a = 1 . 5 ,
a = 2
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FIG. 1. �Color online� Plots of the stationary probability density
�15� for different values of the parameters 
 and � and l=1.
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=2 the sample paths of x�t� are continuous and the station-
ary distribution is uniform—i.e., Pst�x�=1 / �2l�.

IV. CONCLUSIONS

We have derived the generalized FP equation associated
with the Langevin equation driven by an arbitrary white
noise. This FP equation accounts for the influence of the
noise by means of the characteristic function of the white-
noise-generating process. In the case of Lévy flights, this
equation has been reduced to a fractional FP equation and
has been solved analytically in the steady state for a confined
domain. It has been shown that both symmetric and asym-
metric Lévy flights in an infinitely deep potential well are

distributed according to the beta probability density. The pre-
ferred concentration of flying objects near impenetrable
boundaries results from the jumping character of Lévy
flights.
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